Utforsk disse og flere idéer!

Graphics@{Opacity[.04],NestList[#/.Disk[c_,r_]:>Table[Disk[c+RotationMatrix[2Pi n/7].{0,r/2},r/2],{n,7}]&,Disk[{0,0},1],3]}

Graphics@{Opacity[.04],NestList[#/.Disk[c_,r_]:>Table[Disk[c+RotationMatrix[2Pi n/7].{0,r/2},r/2],{n,7}]&,Disk[{0,0},1],3]}

Graphics@{Disk[],    Table[{Red, Dotted,        Line[# {{Cos[r], Sin[r]}, {Cos[5 r], Sin[5 r]}}]}, {r, 0,        360}] & /@ Range[.2, 1, .2]}

Tweet-a-Program on

Graphics@{Disk[], Table[{Red, Dotted, Line[# {{Cos[r], Sin[r]}, {Cos[5 r], Sin[5 r]}}]}, {r, 0, 360}] & /@ Range[.2, 1, .2]}

t = Degree; Graphics@{Disk[],    Table[{White, Thick,      Line[{{Cos[r t], Sin[r t]}, {Cos[2 r t], Sin[2 r t]}}]}, {r, 0,      360}]}

Tweet-a-Program on

t = Degree; Graphics@{Disk[], Table[{White, Thick, Line[{{Cos[r t], Sin[r t]}, {Cos[2 r t], Sin[2 r t]}}]}, {r, 0, 360}]}

r = 1 - n/10; Graphics@{Disk[{0, 1}],    Table[{White, Thick,      Circle[#, r] & /@ {{0, r}, {n/10, 1}, {-n/10, 1}},      Circle[{0, 2 - n/10}, n/10]}, {n, 0, 10}]}

Tweet-a-Program on

r = 1 - n/10; Graphics@{Disk[{0, 1}], Table[{White, Thick, Circle[#, r] & /@ {{0, r}, {n/10, 1}, {-n/10, 1}}, Circle[{0, 2 - n/10}, n/10]}, {n, 0, 10}]}

Needs["PolyhedronOperations`"];Show[Nest[PolyhedronOperations`Geodesate[#,4]&,N@PolyhedronData["Tetrahedron"],3],Boxed->False]

Tweet-a-Program on

Needs["PolyhedronOperations`"];Show[Nest[PolyhedronOperations`Geodesate[#,4]&,N@PolyhedronData["Tetrahedron"],3],Boxed->False]

n = 400;a = Pi;Line/@Table[{{Sin@(2 a i/n - a/5),Cos@(2 a i/n)}, {Cos@(2 a i/n - a/2), Sin@(2 a i/n - a/3)}}, {i, n}] //Graphics

Tweet-a-Program on

n = 400;a = Pi;Line/@Table[{{Sin@(2 a i/n - a/5),Cos@(2 a i/n)}, {Cos@(2 a i/n - a/2), Sin@(2 a i/n - a/3)}}, {i, n}] //Graphics

VoronoiMesh[AnglePath[Table[{Sqrt[k], GoldenAngle}, {k, 800}]], PlotTheme -> "Lines"]

Tweet-a-Program on

VoronoiMesh[AnglePath[Table[{Sqrt[k], GoldenAngle}, {k, 800}]], PlotTheme -> "Lines"]

Graphics3D[{Opacity[.5], Glow[Red], EdgeForm[Gray],   PolyhedronData["DodecahedronSixCompound", "Faces"]}, Boxed -> False]

Tweet-a-Program on

Graphics3D[{Opacity[.5], Glow[Red], EdgeForm[Gray], PolyhedronData["DodecahedronSixCompound", "Faces"]}, Boxed -> False]

Graphics[Table[{RandomColor[],Circle[{0,0}, n]}, {n,0, 1,.01}]]

Tweet-a-Program on

Graphics[Table[{RandomColor[],Circle[{0,0}, n]}, {n,0, 1,.01}]]

Plot3D[Sqrt[1 - x^2 - y^2], {x, -2, 2}, {y, -2, 2}, PlotRange -> All]

Tweet-a-Program on

Plot3D[Sqrt[1 - x^2 - y^2], {x, -2, 2}, {y, -2, 2}, PlotRange -> All]

Pinterest
Søk