Utforsk disse og flere idéer!

Graphics@{Opacity[.04],NestList[#/.Disk[c_,r_]:>Table[Disk[c+RotationMatrix[2Pi n/7].{0,r/2},r/2],{n,7}]&,Disk[{0,0},1],3]}

Graphics@{Opacity[.04],NestList[#/.Disk[c_,r_]:>Table[Disk[c+RotationMatrix[2Pi n/7].{0,r/2},r/2],{n,7}]&,Disk[{0,0},1],3]}

j=List@@JuliaSetPlot[.361+.324 I,ColorFunction->None];Graphics@{j,   GeometricTransformation[j, ScalingTransform[-1, {1, 0}]]}

Tweet-a-Program on

j=List@@JuliaSetPlot[.361+.324 I,ColorFunction->None];Graphics@{j, GeometricTransformation[j, ScalingTransform[-1, {1, 0}]]}

t = Degree; Graphics@{Disk[],    Table[{White, Thick,      Line[{{Cos[r t], Sin[r t]}, {Cos[2 r t], Sin[2 r t]}}]}, {r, 0,      360}]}

Tweet-a-Program on

t = Degree; Graphics@{Disk[], Table[{White, Thick, Line[{{Cos[r t], Sin[r t]}, {Cos[2 r t], Sin[2 r t]}}]}, {r, 0, 360}]}

VoronoiMesh[AnglePath[Table[{Sqrt[k], GoldenAngle}, {k, 800}]], PlotTheme -> "Lines"]

Tweet-a-Program on

VoronoiMesh[AnglePath[Table[{Sqrt[k], GoldenAngle}, {k, 800}]], PlotTheme -> "Lines"]

Graphics@{Opacity[.1],NestList[# /.Disk[c_, r_]:>Table[Disk[c+RotationMatrix[2Pi n/5].{0,R=r/2},R],{n,5}] &, Disk[{0,0},1],4]}

Tweet-a-Program on

Graphics@{Opacity[.1],NestList[# /.Disk[c_, r_]:>Table[Disk[c+RotationMatrix[2Pi n/5].{0,R=r/2},R],{n,5}] &, Disk[{0,0},1],4]}

Plot3D[2*y*Sin[x],{x,-10,10},{y,-5,5}]

Tweet-a-Program on

Plot3D[2*y*Sin[x],{x,-10,10},{y,-5,5}]

Rotate[PolarPlot[   Table[Floor[Sqrt[x^4 - k^4]/.1], {k, 0, Pi, .1}], {x, -Pi, Pi},    Axes -> False, ColorFunction -> (Hue[#4] &)], Pi/2]

Tweet-a-Program on

Rotate[PolarPlot[ Table[Floor[Sqrt[x^4 - k^4]/.1], {k, 0, Pi, .1}], {x, -Pi, Pi}, Axes -> False, ColorFunction -> (Hue[#4] &)], Pi/2]

Graphics[Table[{RandomColor[],Circle[{0,0}, n]}, {n,0, 1,.01}]]

Tweet-a-Program on

Graphics[Table[{RandomColor[],Circle[{0,0}, n]}, {n,0, 1,.01}]]

r = 1 - n/10; Graphics@{Disk[{0, 1}],    Table[{White, Thick,      Circle[#, r] & /@ {{0, r}, {n/10, 1}, {-n/10, 1}},      Circle[{0, 2 - n/10}, n/10]}, {n, 0, 10}]}

Tweet-a-Program on

r = 1 - n/10; Graphics@{Disk[{0, 1}], Table[{White, Thick, Circle[#, r] & /@ {{0, r}, {n/10, 1}, {-n/10, 1}}, Circle[{0, 2 - n/10}, n/10]}, {n, 0, 10}]}

Graphics3D[{Cone[Table[s=i 1.618^2;t= ArcCos[1-i/1000];p={Sin@t Cos@s,Sin@t Sin@s,Cos@t};{p,1.5p},{i,2000}],.2]},Boxed -> False]

Tweet-a-Program on

Graphics3D[{Cone[Table[s=i 1.618^2;t= ArcCos[1-i/1000];p={Sin@t Cos@s,Sin@t Sin@s,Cos@t};{p,1.5p},{i,2000}],.2]},Boxed -> False]

Pinterest
Søk