Utforsk disse og flere idéer!

GraphPlot[Flatten[Table[Table[j->FromDigits[Insert[IntegerDigits[j,2],0,i],2],{i, Length[IntegerDigits[j,2]]+1}],{j,0,2047}]]]

GraphPlot[Flatten[Table[Table[j->FromDigits[Insert[IntegerDigits[j,2],0,i],2],{i, Length[IntegerDigits[j,2]]+1}],{j,0,2047}]]]

Graphics3D[{Tube[      Table[Exp@{t Cos[99 t], t Sin[99 t], # Sqrt@t}, {t,         0, .8, .002}], .068,       VertexColors -> RandomColor@402] & /@ {1, -1}}]

Tweet-a-Program on

Graphics3D[{Tube[ Table[Exp@{t Cos[99 t], t Sin[99 t], # Sqrt@t}, {t, 0, .8, .002}], .068, VertexColors -> RandomColor@402] & /@ {1, -1}}]

ImageAdjust@LaplacianGaussianFilter[DistanceTransform@ColorNegate@ImageRotate@EdgeDetect@MandelbrotSetPlot[Frame->False],2]

Tweet-a-Program on

ImageAdjust@LaplacianGaussianFilter[DistanceTransform@ColorNegate@ImageRotate@EdgeDetect@MandelbrotSetPlot[Frame->False],2]

pts=RandomReal[1,{10,3}];f=Nearest[pts];DensityPlot3D[First[f[{x,y,z}]]/.MapIndexed[#->First@#2&,pts],{x,0,1},{y,0,1},{z,0,1}]

Tweet-a-Program on

pts=RandomReal[1,{10,3}];f=Nearest[pts];DensityPlot3D[First[f[{x,y,z}]]/.MapIndexed[#->First@#2&,pts],{x,0,1},{y,0,1},{z,0,1}]

Graphics@{Blue, Thick,    NestList[Rotate[#, Pi/3, {0, 0}] &,     Table[{Line[{{0, n/30}, {(-1)^n Sin[n Pi/30], 2 n/30}}]}, {n, 1,       29}], 5]}

Tweet-a-Program on

Graphics@{Blue, Thick, NestList[Rotate[#, Pi/3, {0, 0}] &, Table[{Line[{{0, n/30}, {(-1)^n Sin[n Pi/30], 2 n/30}}]}, {n, 1, 29}], 5]}

q@{x_,y_}:={E/12-y+.4Abs@Sqrt[x^2-x-1],x};ListPolarPlot[#+NestList[q@#&,{-1.3,1.3},20000]&/@{Pi,-Pi},Prolog->{Disk[{-.33,0},4]}]

Tweet-a-Program on

q@{x_,y_}:={E/12-y+.4Abs@Sqrt[x^2-x-1],x};ListPolarPlot[#+NestList[q@#&,{-1.3,1.3},20000]&/@{Pi,-Pi},Prolog->{Disk[{-.33,0},4]}]

ParametricPlot[-{Cos@u/u,Sin@u/u},{u,.001,100Pi}, ColorFunction->(Hue[#3 .1]&),PlotStyle->{Dotted,Thickness@.13},Axes->False]

Tweet-a-Program on

ParametricPlot[-{Cos@u/u,Sin@u/u},{u,.001,100Pi}, ColorFunction->(Hue[#3 .1]&),PlotStyle->{Dotted,Thickness@.13},Axes->False]

Graphics[ Table[ {RGBColor[1-t/20,0,Sin[a/2]], Disk[{Cos[a],Sin[a]-0.05*t}*t]}, {t,20}, {a,0,2*Pi, 0.15 *Pi} ]]

Tweet-a-Program on

Graphics[ Table[ {RGBColor[1-t/20,0,Sin[a/2]], Disk[{Cos[a],Sin[a]-0.05*t}*t]}, {t,20}, {a,0,2*Pi, 0.15 *Pi} ]]

j=List@@JuliaSetPlot[z/z^3+.5I+.5,z,ColorFunction->None,PlotStyle->Red];Graphics@NestList[Rotate[#,Pi/3,{6,.12}]&,j,5]

Tweet-a-Program on

j=List@@JuliaSetPlot[z/z^3+.5I+.5,z,ColorFunction->None,PlotStyle->Red];Graphics@NestList[Rotate[#,Pi/3,{6,.12}]&,j,5]

SliceDensityPlot3D[  Exp[-(x^2 + y^2 + z^2)], "CenterPlanes", {x, -2, 2}, {y, -2,    2}, {z, -2, 2}]

Tweet-a-Program on

SliceDensityPlot3D[ Exp[-(x^2 + y^2 + z^2)], "CenterPlanes", {x, -2, 2}, {y, -2, 2}, {z, -2, 2}]

Pinterest
Søk