Cathrine Elton

Cathrine Elton

Cathrine Elton
Flere idéer fra Cathrine
http://4.bp.blogspot.com/-7cWmtrwleKI/UjqOVW6syXI/AAAAAAAADCc/W9w7DwRTlNs/s1600/butterfly.jpg MOOKA

http://4.bp.blogspot.com/-7cWmtrwleKI/UjqOVW6syXI/AAAAAAAADCc/W9w7DwRTlNs/s1600/butterfly.jpg MOOKA

Beautiful image by Si Scott Studio

Beautiful image by Si Scott Studio

Zentangle Pattern PEARLY by Sandra

Zentangle Pattern PEARLY by Sandra

intothecontinuum:   Mathematica code: S[n_, t_] := Sin[n*2 Pi/50 + t]ListAnimate[ Show[   Table[    Plot[     100 - n + (10*S[n,t] + .02)*Exp[-(x - 4.5*S[n, 0])^2/Abs[S[n,t]]],      {x, -10, 10},    PlotStyle - Directive[Black, Thick], PlotRange - {{-7, 7}, {0, 100.5}},    Filling - Axis, FillingStyle - White, Axes - False, AspectRatio - Full,     ImageSize - {500, 750}],  {n, -10, 100, 1}]],{t, .001, 2 Pi + .001, (2 Pi + .001)/30}, AnimationRunning-False]

intothecontinuum: Mathematica code: S[n_, t_] := Sin[n*2 Pi/50 + t]ListAnimate[ Show[ Table[ Plot[ 100 - n + (10*S[n,t] + .02)*Exp[-(x - 4.5*S[n, 0])^2/Abs[S[n,t]]], {x, -10, 10}, PlotStyle - Directive[Black, Thick], PlotRange - {{-7, 7}, {0, 100.5}}, Filling - Axis, FillingStyle - White, Axes - False, AspectRatio - Full, ImageSize - {500, 750}], {n, -10, 100, 1}]],{t, .001, 2 Pi + .001, (2 Pi + .001)/30}, AnimationRunning-False]

16768b39cde54153675c84ae35d4aa68.jpg 320 × 1 186 bildepunkter

16768b39cde54153675c84ae35d4aa68.jpg 320 × 1 186 bildepunkter

Strircles, by Molly Hollibaugh, CZT, illustrated by Maria Thomas

Strircles, by Molly Hollibaugh, CZT, illustrated by Maria Thomas

..
Adult Coloring Book: Butterflies and Flowers : Stress Relieving Patterns (Volume 7): Cherina Kohey: 9781516866748: Amazon.com: Books

Adult Coloring Book: Butterflies and Flowers : Stress Relieving Patterns (Volume 7): Cherina Kohey: 9781516866748: Amazon.com: Books

Beautiful swirly tree.  I'm planning on painting this on the wall and then adding pictures of our family to create a unique "family tree."

Beautiful swirly tree. I'm planning on painting this on the wall and then adding pictures of our family to create a unique "family tree."